
RESEARCH

Enhancing Computer Science Education with Pair Programming and
Problem Solving Studios
J. Walker Orr, Ph.D.1

1 EECS, George Fox University

Keywords: Pair Programming, Computer Science, Pedagogy, Flipped Classroom

ASEE Computers in Education
Vol. 14, Issue 2, 2024

This study examines the adaptation of the problem-solving studio to computer
science education by combining it with pair programming. Pair programming is
a successful software engineering practice in industry, but has seen mixed results
in the classroom. Recent research suggests that pair programming has promise
and potential to be an effective pedagogical tool, however what constitutes good
instructional design and implementation for pair programming in the classroom
is not clear. We developed a framework for instructional design for pair
programming by adapting the problem-solving studio (PSS), a pedagogy
originally from biomedical engineering. PSS involves teams of students solving
open-ended problems with real-time feedback given by the instructor. Notably,
PSS uses problems of adjustable difficulty to keep students of all levels engaged
and functioning within the zone of proximal development. The course
structure has three stages, first starting with demonstration, followed by a PSS
session, then finishing with a debrief. We studied the combination of PSS and
pair programming in a CS1 class over three years. Surveys of the students report
a high level of engagement, learning, and motivation.

1. Introduction
Pair programming is an eXtreme programming (XP) methodology1 that has
seen some use in industry.2 It involves two programmers working together
on a single problem and computer with one programmer taking the role of
a “driver” and the other in the role of “navigator.” The “driver” operates the
keyboard and directly writes the code while the “navigator” observes and asks
questions, critiquing and refining the code and its design. The “navigator”
is not passive, they watch for bugs and defects, think of alternative designs,
and look up related documentation and resources. Though the effectiveness
of pair programming is mixed,2,3 in some cases it has been shown to produce
higher quality code faster than solo programming.4 The intention is that
pair programming will help developers working together catch mistakes and
defects much faster than on their own.

For education, pair programming is compelling because it fits into the
paradigm of apprenticeship and distributed learning, the idea that
“Knowledge is commonly socially constructed, through collaborative efforts
toward shared objectives or by dialogues and challenges brought about by
differences in persons’ perspectives”.5 Further, it has been shown to increase

Orr JW. Enhancing Computer Science Education with Pair Programming and Problem
Solving Studios. ASEE COED. 2024;14(2):38-53.

http://jorr.cs.georgefox.edu/

student satisfaction, reduce student frustration, improve student’s tendency
to persist, and give students a sense of self-efficacy.6 The ICAP framework
describes four modes of student engagement and behavior, identifying the
interactive mode as producing the highest level of student cognitive
engagement. Interactive modes of learning are believed to produce deep,
transferable knowledge.7 Pair programming fits within ICAP’s definition
of interactive learning and hence has the potential to produce robust,
transferable, conceptual learning. Recently, Hawlitschek et al.3 conducted
a literature review and meta-study of pair programming in education
concluded that pair programming is important and effective for students,
especially beginners, but effective instructional design was missing. Hence
pair programming has been shown to have a lot of potential as a teaching
methodology but the details of how to implement it correctly in a classroom
has yet to be discovered.

We propose that the solution to effective instructional design for pair
programming in the classroom has been found in the Problem Solving
Studio (PSS) learning environment.8 PSS was designed to teach biomedical
engineering students to solve complex problems without having to resort to
rote memorization of procedures and algorithms. Students work in teams of
two to solve ill-defined problems in a public space, enabling instructors to
provide real-time feedback as they progress. A key feature of PSS is dynamic
scaffolding, a targeted adjustment of problem difficulty to keep students
challenged but not discouraged. By increasing or decreasing the difficulty on
a per-team basis in real-time, as many students as possible can be kept in the
zone of proximal development. A lecture-based course will have a difficult
time matching the variety of levels that students are at since the same lecture
content and delivery are communicated to all the students. There is good
evidence that PSS improves students’ conceptual understanding.8

PSS and pair programming are a natural fit and the combination of the two
match the objectives and pedagogical needs of CS1 courses. For this reason,
this study specifically addresses the adaptation of PSS in conjunction with
pair programming for CS1 pedagogy. Two key objectives of a CS1 course
are to teach algorithmic problem solving skills and a specific programming
language. One of the challenges for expert instructors is that both problem
solving and language knowledge is so deeply ingrained that it is second-
nature to the instructors. Paradoxically, this high level of understanding
means instructors often have a difficult time communicating this knowledge
since it is taken for granted.8 Further, student ability and background varies
significantly in CS1 courses. However, the synthesis of PSS and pair
programming addresses these challenges and objectives directly, by giving
students a hands-on opportunity to develop problem solving and
programming language skills. PSS with the addition of pair programming,
teaches algorithmic problem solving through a cognitive apprenticeship
environment.9 Students learn from each other and are also guided by the

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 39

instructor or other teaching assistants. Peer learning is helpful since students
who are at similar levels of ability have recent experience with similar
problems. This means that they are often better at communicating those
solutions since they remember the details and particularities of both what
they found challenging and how they overcame those obstacles. Pair
programming’s ability to give rapid feedback helps students learn the syntax
and semantics of a programming language. Further it promotes pair
collaboration and problem solving. Pair programming has been shown to
help notice programmers solve problems can not handle on their own.3 The
combination of PSS and pair programming creates both an apprenticeship
and peer learning environment in which students develop both problem
solving and programming language skills.

2. Literature Review
There has been a significant amount of research into using pair programming
for educational purposes. The popularization of pair programming largely
started by Extreme Programming Explained.1 It promoted pair programming,
among other techniques, as a way of producing high quality code faster
than conventional methods. Williams and Upchurch6 combined professionals
with advanced undergraduates and found that “Experimental results show
pair-programming pairs develop better quality code faster with only a
minimal increase in pre-release programmer hours.” Further, they noted that
the programmers generally found that pair programming was more enjoyable
than programming alone.

Hannay et al.2 studied the effect of using pair programming in a CS1
course with 600 students. Students did their work with pair programming,
alternating driver and navigator roles. The results were better quality
programs and a significantly higher rate of completion for the course among
those that participated in pair programming.

Williams and Upchurch6 had students use pair programming for their work
in a web based programming course. The results of an anonymous survey
conclude that the 74% of students thought that they could solve any problem
with their partner and 84% believed they learned faster because of their
partner.

Though there are some mixed results among studies as well. McDowell et
al.10 saw no improvement in midterm or programming scores, but did see
an improvement under some “holistic” scores. A large randomized trial of
1,530 undergraduates found that pair programming was virtually unrelated
to all measured outcomes. However, pair programming did appear to hurt
the grades, success, and likelihood of White students and had no effect on
any other demographic.11 A study of persistence of CS students suggests that
pair programming might improve the persistence of women in CS though the
results were not statistically significant.12

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 40

Hannay et al.2 conducted a meta-analysis of 18 studies concluded that has
an overall positive impact on software quality and time, but did require
more total effort by the programmers involved. The studies were on a mix
of educational and professional teams. However, they noted that pair
programming offers a substantial benefit for junior developers, with their
code correctness increasing 73% on regular programs and 149% on more
complex programs.

Recently another meta-study was conducted on all the published articles on
pair programming for higher education from 2010 to 2020. The analysis
contained 61 articles and contained some important conclusions and
observations. First, pair programming is generally beneficial for student
learning, particularly for inexperienced students. Second, pair programming
is generally difficult to apply successfully in the classroom. They noted
a lack of research on effective instructional design for pair programming.
Most research on instructional design is on how to select the pairs, though
the results are mixed. In particular, Hawlitschek et al.3 identified that the
problem with pair programming is when two weak students are paired
together without much guidance.

3. Approach
PSS is a “flipped classroom” pedagogy in which pairs of students work
together to solve ill-structured, complex problems all while engaging in a
critical dialog with the instructor. This problem solving centered approach
is intended to match real-world problem solving and encourage deep,
conceptual thinking, and partner-based learning. As the pairs work on a
problem, they will receive on the spot feedback called a desk crit. In addition,
the instructor may feel the need to adjust the problem difficulty up or down
to match the student’s ability and progress.8 This real-time adjustment is
called a “dynamic scaffold” and is used to keep the students in their zone
of proximal development (ZPD).13 Overall, PSS is a cognitive apprenticeship
model of instruction, in which students learn by practicing problem solving
and receiving personalized feedback as they work.

Our method is to adapt PSS to use the practice of pair programming. In
our adaption, a series of shorter problems was found to be the most effective
approach. The series of problems keep the pairs on-track, focused, and within
their ZPD. This also provides more opportunities to employ the dynamic
scaffolding to adjust problem difficulty.

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 41

3.1. Problem Structure & Dynamic Scaffolding
One essential aspect to PSS is the problem structure and formulation. Rather
than using typical textbook problems, PSS challenges students by presenting
them with problems that are more ill-structured and complex8 according
to Jonassen and Hung’s14 problem difficulty scheme . These problems are
designed and intended to have multiple legitimate solutions.14

In the original PSS for engineering, a single class was typically two hours in
length. During a single class, a student team was expected to finish between
one and three problems.8 This illustrates how the problems are lengthy and
challenging with possibly many “deadends”, sub-problems, and an overall
meandering path to a solution. By comparison, typical textbook problems are
far more formulaic, straightforward, and linear.

In our adaptation of PSS for CS education, the problems are typically
presented to the students with examples of program inputs and desired
outputs. For example, if the problem is to write a program to produce prime
numbers, the prompt for the student is minimal “Work with your partner to
write a program that produces prime numbers.” The prompt is paired with
example input and output, in this case a command-line interface:

Enter the upper limit for primes: 10
The primes under 10:
2
3
5
7

This example is sufficiently ill-structured and complex for a CS1 course
because it is solvable with their knowledge and skill level and allows for
multiple legitimate solutions. First, the pair must identify the problem and
challenges that need to be overcome to produce a solution. The decisions
about which control structures to use and how to use them or which
functions would be helpful to define or use are entirely up to the student
pair. Each pair must create a complete solution i.e. a program for the given
problem from scratch. Further, students may have to do some independent
research on the particular application area, in this example, on the relevant
properties of prime numbers to complete the task. In general, an example
of input to a program and corresponding desired output is essentially a
bare minimum specification for a program. In that sense, the problems are
presented in an ill-structured fashion, since they do not explicitly ask for
particular programming constructs or methodologies, only a desired goal.
This gives the student pairs the opportunity to navigate a large space of
solutions while keeping all the students in the class on the same task.

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 42

Another key aspect of PSS problems is complexity. The problem at the
center of a PSS is targeted at the more advanced students. This ensures a
sufficiently complex problem, however it will be too challenging for many
of the students. The way this issue is addressed is through “dynamic
scaffolding”, the process of instructors adjusting problems in real time.8

If a team is stuck and unable to make any progress on a problem, the
instructor may adjust the problem difficulty down by making the problem
less complex, more structured, or both. This allows as many students as
possible to be within their ZPD.13 The ZPD means a challenge is appropriate
for student learning, meaning that it is neither too challenging to be
discouraging nor too boring to be uninteresting. Dynamic scaffolding means
students are far more likely to be in their ZPD than traditional lectures which
are typically only suited for a subset of students.

Our application of PSS for CS extends this idea of dynamic scaffolding
to the problem selection and formulation. Rather than selecting a single
problem for the PSS, our adaptation utilizes between one and five problems.
The typical structure of our CS PSS is to have a “ladder” of problems,
starting with a relatively easy problem, then followed by moderately difficult
problems, and then finally ending with an advanced problem. All the
problems are centered around a single concept or methodology being taught,
for example, looping control structures.

We believe this “problem ladder” has some advantages over a single advanced
problem. First it allows students to work at their own pace and naturally
fall into their ZPD. Students will typically have both the experiences of
successfully solving a problem and the experience of being challenged by
another. This way students are encouraged by solving a problem and are also
made aware that there is still more to learn. This is particularly important
in CS1 classes since students typically have a diverse background regarding
prior programming experience. It is important to encourage and motivate the
inexperienced students while challenging the move advanced students. One
important aspect of the “problem ladder” is that instructors should clearly
communicate that students are not expected to solve all the problems. This
will help prevent under-performing students from becoming discouraged by
advanced problems.

Each problem on the “ladder” can be dynamically adjusted as well, which
enables the instructor to have a fine-grained control over problem difficulty.
For example, if a pair spent most of the class period solving the “easy”
problem, it is often more useful for them to revise an adjusted version of the
problem in the remaining time. That way they can spend their time focused
on solving the problem rather than on the contextual switch to another
problem. This dynamic adjustment is useful at both ends of the “ladder”.
If the “easy” problem is too difficult, it can be adjusted down. Likewise,
if a pair of advanced students solve all the problems in the ladder, the last

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 43

problem can be adjusted to be more difficult. Returning to the example of
computing prime numbers, one way to apply dynamic scaffolding to the
problem is to change the requirement of producing all the primes under a
limit to instead write a function that determines if a given number is prime
or not. The complexity of the problem is reduced because the initial version
of the problem requires two loops to solve, while the revised version only
requires one. Also this provides additional structure to the problem since the
goal is made more specific.

To ensure student motivation, participation in the PSS is part of the course
grade. Though the requirement is not onerous, all that is required of the
students is their prescience and a good-faith effort. Attendance to PSS
sessions are obviously key to student learning and the requirement to put in
some effort helps encourage them to climb up the problem ladder. Though,
the natural progression of problem difficulty and early success provides
intrinsic motivation. In practice we observed that students enjoyed solving
problems and were naturally motivated generally speaking.

3.2. Informal Assessment & Feedback
PSS applies the idea of a desk crit from architecture design studios, where
instructors give “informal formative assessment” to students through a
discussion of their work.15 In the PSS framework, instructors provide this
feedback and assessment through asking unobtrusive, open-end questions.8

For example, the dialog can be initiated by asking questions such as “How
are you doing?”, “What are you working on now?”, or “Are you making
progress?” can open a dialog that can provide specific instruction, assistance,
or feedback to the pair. The initial question enables the instructor to quickly
determine the status of the student pair. From there more intentional and
specific questions can be asked to promote deeper thinking.16 These
dialogues are effective opportunities to discuss how the students solved a
problem, what issues they are stuck on, alternative solutions, get help on
practical issues, starting problem solving, conventions regarding design and
communication of solutions, ways to an improve a solution, clarify
conceptual misunderstandings, and so on. Also, it is natural during these
dialogues to enact dynamic scaffolding by adjusting the problem difficultly
up or down based on how the pair is performing. Further, these dialogues
are a good time for individualized help. Naturally over both the class period
and the course of the semester, the need for support diminishes and the pairs
work effectively on their own. Instructors can also get a sense of which topics
or methodologies the entire class is struggling with versus individual students.
This feedback for the instructor can help them improve their lectures or
demonstration sessions as well as the PSS sessions themselves. This means
the course design can be adjusted on-the-fly or improved for the future. If
many pairs are struggling with the same issues, the instructor can stop the
PSS and give some brief instruction or clarification to the entire class. What

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 44

this feedback provides is a means for the instructor to identify “troublesome
knowledge” that the students are struggling to learn. With these insights,
the instructor can provide targeted instruction and clarification to specifically
address these difficult topics.17

In our adaptation of PSS for CS, we incorporated the desk crit in two
different ways. First, these dialogues are engaged informally as the student
pairs work on problems. More time is focused on the pairs that were
struggling the most to provide extra support. For the more advanced
students, desk crits are more of a time to suggest improvements or alternative
solutions. Secondly, the desk crits are employed when a pair finishes a
problem. This is a good time to provide extra encouragement, feedback,
improvements, etc. Further, it is a good way to informally assess student
progress and ability by tracking both the number of problems a pair finishes
and the amount of time they need.

In general, the desk crit is a good way to provide individualized instruction.
Struggling students can get help with the practical or conceptual problems
they have. More advanced students can be challenged to think more deeply
about the problem or improve the presentation or design of their solution.
This kind of individualized instruction corresponds well to the student’s
ZPD.

Naturally an instructor can only provide feedback to one team at a time. To
handle larger class sizes, teaching assistants can be utilized to give feedback
and other guidance to student pairs. This was notable part of the original PSS
design,8 however did not find the use of teaching assistants necessary for our
adaptation.

3.3. Pair Programming Dyad
An essential component of PSS is the grouping of students into pairs called
dyads.8 The dyads are important since it gives each student a partner to better
navigate, interpret, and solve the problem.18 This partnership facilitates
students sharing knowledge and expertise as well as providing each other
with helpful critique. Moreover, the instructor’s knowledge and skills, having
reached an expert level of ability, are tacit and difficult to articulate. Students
however are at closer levels of ability to each other and are in the process of
learning the material which can make them more suited to answering each
other’s questions.

In the original PSS, students shared a 17" x 22" blotter pad as a publicly
visible problem solving space. One student writes on the pad while the other
partner observes, listens carefully, agrees or critiques the writer. After a few
minutes the pair exchanges the roles of writer and observer. The students also
negotiate the duration of the writer role.8

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 45

Similarly, in computer science education and in industry, pair programming
is a well-established practice of team-based problem solving.1‑3 The
complementary pair of roles has been shown to be an effective way of
producing high-quality programs and is generally enjoyable for both
partners.2,4 The adaptation of PSS to CS replaces the blotter pad and roles of
writer and observer with pair programming, that is, a single computer and the
roles of driver and navigator. This closely matches this aspect of the design of
the original PSS while contextualizing it to CS education.

A recent large meta-study concluded that the effectiveness of pair
programming in education was mixed, but that was primarily due to a lack of
effective instructional structure and guidance.3 Our adaptation of PSS seeks
to address this problem, specifically with the structure provided by the use of
ill-structured, complex problems, dynamic scaffolding, problem ladders, and
desk crits.

Solving ill-structured, complex problems is arguably the centerpiece of PSS.
For the driver, the benefits of working on these problems is simply the process
of solving and writing a solution to the problem. However, the navigator is
particularly important and beneficial. Since the problems are ill-structured,
by definition there is a lot of research that needs to be done. As the driver
writes the code, the navigator can research possible important components
of a solution, key knowledge about the particular problem, refer back to
the course textbook, consult examples, and explore alternative solutions.
Additionally, the navigator can observe the problem solving process of the
driver. This is especially if the navigator is relatively inexperienced compared
to the driver. For most people, the process of problem solving is difficult to
communicate. The navigator has the opportunity to learn by example, which
directly ties into the apprenticeship mode of learning that PSS encourages.
This means the navigator is learning from observing their partner, by listening
to the feedback from the desk crit, and by participating and communicating
with their partner.

The problem ladder gives direction for each pair and naturally provides
opportunities for the partners to swap roles. Our instructors communicated
and emphasized that pairs exchange roles when they complete a problem.
This allows each member to get the experience and benefits of being both
a “driver” and a “navigator”. Further, the exchange of roles helps prevent
either partner from either dominating or withdrawing. Individuals who tend
to dominate and be assertive will benefit by performing the thoughtful,
observation-centered role of the navigator. Likewise, individuals who tend to
be more passive will benefit by performing the direct, active role of the driver.

One of the criticisms of pair programming for novice programmers is that it
is “the blind leading the blind”.19 However, the combination of the problem
ladder, desk crits, and dynamic scaffolding, student pairs that are struggling
can be quickly identified and put back on a track to success. Within a few

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 46

Table 1. Survey data for CS1 over three years. “PSS Useful” is on a 1 to 5 Likert scale with 1 indicating not useful and 5 indicating very
useful. The other columns have a binary response and the value reflects the proportion of with a positive answer. The four corresponding
survey questions are in order “In general, are the in-class activities useful to you?”, “Are the activities engaging?”, “Are the activities
challenging?”, and “Did you appreciate having a partner?”.

Year Year Responses Responses PSS Useful PSS Useful PSS Engaging PSS Engaging PSS Challenging PSS Challenging Partner Useful Partner Useful

2020 34 3.97 100% 97.06% 94.12%

2021 43 4.23 97.73% 86.36% 97.73%

2022 39 4.18 100% 92.50% 92.50%

Combined 116 4.16 99.15% 91.53% 94.92%

minutes of starting the PSS activity, it becomes clear which pairs will be
successful on their own and which need some help or guidance. Further, if
a large number of pairs are stuck, a quick demonstration or example by the
instructor can get the class back on track. The identification of struggling
students is much quicker than a traditional lecture-based course. Typically the
only time when struggling students are identified is when they turn in their
assignments which means it could take days or weeks. In a PSS, these students
can be found and helped within a single class period.

Both PSS and pair programming are centered on learning through the
exchange of knowledge between peers in the context of a shared problem.
The educational benefit of pair programming is primarily from the
verbalization of problem solving it encourages. The details and roles of pair
programming are not necessarily where the benefits come from but rather
the interaction and discussion they facilitate.2 This is likely the case for PSS
as well, which is based on constructive learning,20 the benefit of PSS is the
facilitated dialog between students and between student and instructor. This
is the central idea of combining PSS and pair programming, to create dialog,
both between students and between student and instructor, around problem
solving for CS. This dialog-centered mode of learning allows students to
construct their own knowledge of CS through problem solving.

3.4. Course Structure
The course we implemented our application of PSS for CS in CS1, CS2,
and web programming courses, but this study is focused on the application
to CS1. These courses followed the typical 3 credit hour format, 50 minute
meetings 3 times per week. A similar format was used for each course. The
first meeting for the week is a demonstration session. A new concept or
topic is discussed and applied by the instructor. This typically means that the
instructor solves a problem by writing a program and testing it. For example,
for a CS1 course, a topic could be for-loops. The second meeting of the week
is a PSS session. Students are presented a “ladder” of problems related to that
week’s topic. At a minimum, they are expected to solve the first rung on the
‘ladder’ since all the problems are related to the topic. The third meeting is
either a debrief of the recent PSS, another PSS, or both. The debrief consists

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 47

Table 2. Survey data on which mode of instruction students prefer. The question presented was “Which do you prefer?” The options for
response were “Lectures,” “In-class exercises and activities,” “Both,” and “Neither.”

Year Year Responses Responses Prefer PSS Prefer PSS Prefer Lecture Prefer Lecture Prefer Both Prefer Both Prefer Neither Prefer Neither

2020 34 35.29% 5.88% 58.82% 0.00%

2021 43 38.64% 4.55% 54.55% 2.27%

2022 39 40.00% 7.50% 52.50% 0.00%

Combined 116 38.14% 5.93% 55.08% 0.85%

of the instructor solving the “second rung” problem while explaining each
step. This gives students who only solved the first problem an example of
how to extend their knowledge and skill. For more advanced students, they
have the opportunity to see an expert solve a problem in a way which is
likely different from how they solved it. From week to week (and even from
course to course), some problems are revisited but with new concepts and
skills available. This gives an opportunity to see how the process and solution
changes with the new material. In summary, the weekly structure of the
course is demonstration, PSS, and finally debrief.

PSS is a replacement for the traditional lecture-based pedagogy. Other aspects
of the course such as assignments and exams are independent of the PSS. For
our PSS adaptation, the same homework and exams were utilized. In the CS1
course, there are 10 homework assignments, an online textbooks with built-
in reading and programming assignments, 2 midterms, and a final exam. This
is the same structure of assignments and exams that was employed before
the adoption of PSS. However, the problems presented in the PSS parallel
the student’s homework assignments. The students’ experience with a type
of problem proceeds as: demonstration, PSS, debrief, and finally homework
assignment. The homework is done individually, however the students have
the opportunity to learn from their instructor and peers before engaging with
the problem on their own.

4. Discussion
Our adaptation of PSS for CS was implemented in a CS1 course and
evaluated over a three year period. In order to evaluate our implementation,
voluntary anonymous surveys were conducted to assess the student’s
perception of its usefulness. Students had two opportunities to fill out the
survey over the course of the 15 semester at about weeks 5 & 10. The results
on how students viewed the PSS sessions can be found in Table 1. Overall the
results of the surveys are very positive. Averaged over the three years, 99.15%
found PSS to be engaging, 91.53% found it to be challenging, and 94.92%
thought their partners were useful. Furthermore, the average score of 4.16
for PSS usefulness, on a Likert scale of 1 to 5, strongly supports the claim
that the PSS was helpful for student learning. This is notable considering the
diverse backgrounds of the students in terms of exposure to CS and computer
programming. At our institution, CS1 is a formal requirement or strongly

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 48

encouraged by a variety of majors including accounting, biology, finance,
and engineering in addition to computer science. These results appear to
strongly suggest that the combination of the problem ladder and dynamic
scaffolding generally kept students challenged and in their ZPD. Given the
overall positive responses, the PSS must have been effective at matching the
appropriate level of difficulty for the majority of students. It is worth noting
that since the data was collected via voluntary, anonymous surveys, that this
is a caveat to their strong results. Since the students had two opportunities
to fill out the survey and the responses are anonymous, the statistics reported
in Tables 1 & 2 likely aggregate over multiple responses from a single
student. Also, based on the number of responses, there were some students
who completed the courses but did not fill out the survey. However, the
survey results do match the anecdotes from instructors that students are
generally very engaged, asking good questions, completing problems, and are
apparently enjoying the experience.

Since the overall structure of the course included lectures, debriefs, and
demonstrations in addition to PSS, the survey included questions about what
part of the class was preferable. The options of lecture, PSS, both, or neither
were given as choices. The lecture option refers to all the class periods that
were not PSS sessions. The results can be found in Table 2. Thankfully only
one student selected “neither” across the three years. Only 5.93% preferred
the lectures, while 39.14% preferred just PSS, and 55.08% preferred the
combination of both. These results suggest the importance of PSS over
simply lecturing but also the need for some combination of the two. The
demonstrations and debrief lectures were important for the students to learn
both essential aspects of the concepts and techniques as well as a chance to
see how an expert would use them. The combination of student application
of knowledge through PSS contrasted with an expert’s demonstration does
match the model of apprenticeship learning better than student application
alone. The importance of the two is reflected in the survey results.

A recent pair programming meta-study concluded, “There is little systematic
knowledge from meta-analyses or literature reviews on effective instructional
design for pair programming, which in fact is a base for effective learning”.3

The results suggest that the combination of problem solving plus dynamic
scaffolding and the weekly demonstration-PSS-debrief structure, are an
effective instructional design for educational pair programming. PSS for CS
combines both the benefits of active learning along with enough guidance
to maintain a cohesive, effective pair. As the pair programming meta-study
observed, “students – at least, novices – usually need instructional support to
ensure the quality and success of collaborative learning activities”.3 PSS for
CS supplies this supporting instructional structure.

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 49

Our results also indicate that students generally found working with a partner
to be beneficial. On average, 94.92% of the respondents indicated that their
partner was useful. This reflects other studies which found that working in
pairs was more enjoyable than working alone,4 enhanced their learning,6 and
lead to more persistence and success.2,21

The majority of research on course design for pair programming has focused
on how to form the pairs. Criteria have included student confidence, prior
experience, genders, consistency of mental models, or other personality traits
However the results of these studies were inconclusive to how best form the
student pairs.3 Our use of random assignment for pair selection for each
PSS session appears to have worked well according to the results of Table 1.
Altogether this might suggest that the most effective pairing strategy is to vary
the pairings. This aligns with the notion of distributed learning, that learning
is facilitated by the interactive of a variety of perspectives.

5. Conclusion
Pair programming has long been a promising pedagogical tool but its
application to the classroom has seen mixed results. In particular, instruction
design for pair programming has seen little research. PSS however is a natural
fit for both CS education and for pair programming in particular.

PSS is an active learning pedagogy that involves student pairs solving
problems in class. It uses dynamic scaffolding to adjust the problem difficulty
to match student ability in order to keep them in their ZPD. PSS is an
apprenticeship model of learning that has been successful in engineering
education.

The adaptation of PSS for CS presented and studied here appears to be a
good solution to the problem of applying pair programming to the classroom
Both the “problem ladder” and dynamic scaffolding provide enough guidance
and direction for students of a variety of backgrounds and abilities. The active
and adaptive nature of the learning environment resulted in a large number
of students reporting to be engaged and challenged.

Further, students reported appreciating the weekly structure of the class as
well. By rotating through, demonstration, PSS, and debriefing, students were
able to see and apply new concepts each week. This provides the freedom and
engagement of active learning while avoiding the pitfall of too little guidance
for inexperienced or weak students.

PSS for CS combines a free and active learning environment with a deliberate
structure to keep students on track. This a fruitful middle ground we believe
students find refreshing while being highly educational. The highly positive
results from students, with the overwhelming majority finding PSS for CS
useful, engaging, and challenging, should encourage other educators to adapt
it to their classroom.

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 50

Acknowledgements
We thank Joe Le Doux for teaching us PSS at a KEEN workshop and for his
insights, comments, and edits when preparing this manuscript. We would also
like to thank the reviewers at ASEE for their thorough and helpful feedback.

Submitted: February 14, 2023 EST. Accepted: September 28, 2023 EST. Published: December 31, 2024 EST.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0

International License (CCBY-4.0). View this license’s legal deed at http://creativecommons.org/licenses/

by/4.0 and legal code at http://creativecommons.org/licenses/by/4.0/legalcode for more information.

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 51

references

1. Beck K. Extreme Programming Explained: Embrace Change. addison-wesley professional; 2000.
2. Hannay JE, Dybå T, Arisholm E, Sjøberg DI. The effectiveness of pair programming: A meta-
analysis. Information and software technology. 2009;51(7):1110-1122.
3. Hawlitschek A, Berndt S, Schulz S. Empirical research on pair programming in higher
education: A literature review. Computer Science Education. Published online 2022:1-29.
4. Williams L, Kessler RR, Cunningham W, Jeffries R. Strengthening the case for pair
programming. IEEE software. 2000;17(4):19-25.
5. Salomon G. Distributed Cognitions: Psychological and Educational Considerations. Cambridge
University Press; 1997.
6. Williams L, Upchurch RL. In support of student pair-programming. ACM SIGCSE Bulletin.
2001;33(1):327-331.
7. Chi MT, Wylie R. The ICAP framework: Linking cognitive engagement to active learning
outcomes. Educational psychologist. 2014;49(4):219-243.
8. Le Doux JM, Waller AA. The problem solving studio: An apprenticeship environment for
aspiring engineers. Advances in Engineering Education. 2016;5(3):n3.
9. Collins A, others. Cognitive apprenticeship: Teaching the craft of reading, writing, and
mathematics. Technical report no. 403. Published online 1987.
10. McDowell C, Hanks B, Werner L. Experimenting with pair programming in the classroom.
In: Proceedings of the 8th Annual Conference on Innovation and Technology in Computer Science
Education. ; 2003:60-64.
11. Bowman NA, Jarratt L, Culver K, Segre AM. Pair programming in perspective: Effects on
persistence, achievement, and equity in computer science. Journal of Research on Educational
Effectiveness. 2020;13(4):731-758.
12. Werner LL, Hanks B, McDowell C. Pair-programming helps female computer science
students. Journal on Educational Resources in Computing (JERIC). 2004;4(1):4-es.
13. Vygotsky LS, Cole M. Mind in Society: Development of Higher Psychological Processes. Harvard
university press; 1978.
14. Jonassen DH, Hung W. All problems are not equal: Implications for problem-based learning.
Essential readings in problem-based learning. Published online 2015:17-42.
15. Dinham SM. An ongoing qualitative study of architecture studio teaching: Analyzing
teacher-student exchanges. ASHE annual meeting paper. Published online 1987.
16. Raths LE. Teaching for Thinking: Theory, Strategies, and Activities for the Classroom. Teachers
College Press; 1967.
17. Perkins D. Constructivism and troublesome knowledge. In: Overcoming Barriers to Student
Understanding. Routledge; 2006:57-71.
18. Hutchins E. The distributed cognition perspective on human interaction. In: Roots of
Human Sociality. Routledge; 2020:375-398.
19. Rosenberg D, Stephens M. Extreme Programming Refactored: The Case against XP. Apress;
2008.
20. Ruiz-Primo MA. Informal formative assessment: The role of instructional dialogues in
assessing students’ learning. Studies in Educational Evaluation. 2011;37(1):15-24.

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 52

21. McDowell C, Werner L, Bullock H, Fernald J. The effects of pair-programming on
performance in an introductory programming course. In: Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education. ; 2002:38-42.

Enhancing Computer Science Education with Pair Programming and Problem Solving Studios

ASEE Computers in Education 53

	Enhancing Computer Science Education with Pair Programming and Problem Solving Studios
	1. Introduction
	2. Literature Review
	3. Approach
	3.1. Problem Structure & Dynamic Scaffolding
	3.2. Informal Assessment & Feedback
	3.3. Pair Programming Dyad
	3.4. Course Structure

	4. Discussion
	5. Conclusion
	Acknowledgements

	References

