• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

ASEE Computers in Education Journal

ASEE's Computers in Education Journal

  • Current Issue (V14-I2)
    • On Building and Implementing Adaptive Learning Platform Lessons for Pre-Class Learning in a Flipped Course
    • PSpice Model of a Shunt DC Motor for Transient Performance Simulation and Its Use in Teaching
    • Mitigating Engineering Student Attrition by Implementing Arduino Activities Throughout Undergraduate Curricula
    • Enhancing Computer Science Education with Pair Programming and Problem Solving Studios
    • Collaborative Senior Design Capstone at Two Geographically Separated Universities
  • Vol. & Issues
  • About
  • Submissions
    • Submission Guidelines
    • Submission Site (2025+)
    • Re-submissions (Pre-2025)
  • Editorial Team
  • Recruitment
Home » Project Based Learning

Project Based Learning

Mitigating Engineering Student Attrition by Implementing Arduino Activities Throughout Undergraduate Curricula

  • PDF (other formats)
    • XML
    • Raw HTML
  • DOI Pending

Abstract

One of the most challenging aspects of engineering education is to engage and motivate the student audience. Studies have found that roughly 40 percent of students planning engineering majors end up switching to other subjects or failing to get any degree. Indeed, American students are turning away from science and math. There are not enough graduates in engineering to meet US workforce demands. Many students enroll in engineering undergraduate programs with the belief that the coursework would include components immediately, and build early in the undergraduate coursework, and when they do not have these hands-on fun and challenging experiences, students select alternative majors. Starting with introductory engineering courses, students should be immediately exposed to hands-on fun and challenging competitive projects. Teaching Arduino in the framework of fun competitions should capture the interest of prospective future engineers and support the engagement and retention of students.

Read the full article here “Mitigating Engineering Student Attrition by Implementing Arduino Activities Throughout Undergraduate Curricula”

Simulation and Interactive Digital Tools to Support Teaching Engineering Manufacturing Processes Course

Download PDF
DOI: 10.18260/1-1-118.1153-36158

Simulation and Interactive Digital Tools to Support Teaching Engineering Manufacturing Processes Course

Bahaa Ansaf 1 , Neb Jaksic 1

1 The Engineering Department, Colorado State University-Peublo, Pueblo, CO, 81001-4901, USA

Abstract

Abstract— Introduction of Manufacturing Processes is one of the core courses in most mechanical engineering, manufacturing engineering, and industrial engineering programs. According to students’ feedback for this course, as well as similar courses offered at different engineering programs, the course is time-intensive, involves no critical thinking, requires limited class participation, and is not well connected with real-world manufacturing problems.

The suggested teaching approach is developed to include several computer-based learning components that can help in creating an active/passive/constructive learning environment for the students. A simulation-based project is used to strengthen constructive concept-based learning and critical thinking for the students and support laboratory analysis. Besides, several online quizzes were developed using a pool of questions related to each topic.

Read the full article here “Simulation and Interactive Digital Tools to Support Teaching Engineering Manufacturing Processes Course”

Primary Sidebar

Recent Articles

  • On Building and Implementing Adaptive Learning Platform Lessons for Pre-Class Learning in a Flipped Course
  • PSpice Model of a Shunt DC Motor for Transient Performance Simulation and Its Use in Teaching
  • Collaborative Senior Design Capstone at Two Geographically Separated Universities
  • Enhancing Computer Science Education with Pair Programming and Problem Solving Studios
  • Mitigating Engineering Student Attrition by Implementing Arduino Activities Throughout Undergraduate Curricula
  • Active Learning Undergraduate Course on UAV Path Planning and Tracking Using Numerical Simulation

Copyright © 2025 American Society for Engineering Education. All rights reserved.